29987 measured reflections

 $R_{\rm int} = 0.053$

1 restraint

 $\Delta \rho_{\text{max}} = 0.21 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

1596 independent reflections

1147 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,6-Diphenylpyridine

Marisa A. Rocha,^a John Nicolson Low,^b* Ligia R. Gomes,^c Antonio Quesada^d and Luís M. N. B. F. Santos^a

^aCentro de Investigação em Química, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal, ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ^cCIAGEB-Faculdade de Ciências da Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos Maia 296, P-4200-150 Porto, Portugal, and ^dDepartamento de Didáctica de las Ciencias, Universidad de Jaén, 23071 Jaén, Spain Correspondence e-mail: che562@abdn.ac.uk

Received 7 November 2007; accepted 13 November 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.006 Å; R factor = 0.055; wR factor = 0.163; data-to-parameter ratio = 9.8.

In the title compound, $C_{17}H_{13}N$, the dihedral angles between the pyridine ring and the phenyl rings are 29.68 (18) and 26.58 (17)°. In the crystal structure, the molecules are linked by a weak $C-H\cdots\pi$ interaction, leading to $[0\overline{1}1]$ chains. There are no further significant intermolecular interactions.

Related literature

For related literature, see: Crispini & Neve (2002); Silva *et al.* (1997). For a previous synthesis, see: Miyaura & Suzuki (1995).

Experimental

Crystal data

 $C_{17}H_{13}N$ $M_r = 231.28$ Orthorhombic, $Pna2_1$ a = 16.1368 (16) Å b = 12.5371 (14) Å c = 6.2969 (4) Å $V = 1273.9 (2) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 120 (2) K $0.70 \times 0.32 \times 0.14 \text{ mm}$

Data collection

Bruker–Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{min} = 0.953, T_{max} = 0.990$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.163$ S = 1.071596 reflections 163 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the pyridine ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C64-H64\cdots Cg1^{i}$	0.95	2.74	3.534 (4)	142
Summature and as (i)	1 1 1			

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DIRAX/LSQ* (Duisenberg *et al.*, 2000); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *FLIPPER* (Oszlányi & Süto, 2004, 2005; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97* (Sheldrick 1997) and *WORDPERFECT* macro *PRPKAPPA* (Ferguson, 1999).

The authors thank 'Servicios Técnicos de Investigación of Universidad de Jaén' and the staff for the data collection, and Dr Manuel Melguizo for his help and advice. Lígia Gomes and Luís Santos acknowledge financial support from Fundação para Ciência e Tecnologia (POCI/QUI/61873/2004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2646).

References

Crispini, A. & Neve, F. (2002). Acta Cryst. C58, 034-035.

- Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Oszlányi, G. & Süto, A. (2004). Acta Cryst. A60, 134-141.
- Oszlányi, G. & Süto, A. (2005). Acta Cryst. A61, 147-152.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Silva, A. M. S., Almeida, L. M. P. M., Cavaleiro, J. A. S., Foces-Foces, C., Liamas-Saiz, A. L., Fontenas, C., Jagerovic, N. & Elguero, J. (1997). *Tetrahedron*, 53, 11645–11658.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o4833 [doi:10.1107/S1600536807058850]

2,6-Diphenylpyridine

M. A. Rocha, J. N. Low, L. R. Gomes, A. Quesada and L. M. N. B. F. Santos

Comment

The bonds and angles are in agreement with those found for related structures described by Crispini & Neve. (2002) and Silva *et al.*(1997). The angles between the mean planes of the pyridine rings and the phenyl rings are 29.68 (18)° (ring attached to C2), and 26.58 (17)° (ring attached to C6). The molecules are linked into chains along [0T1] by a weak C—H. π interaction (Fig. 2 and Table 1); C64—H64.·*Cg*1(–*x* + 1/2, *y* + 1/2, *z* – 1/2), where *Cg*1 is the centroid of the pyridine ring. There are no further intermolecular interactions.

Experimental

The title compound was synthesized by adapting the procedure described by Miyaura & Suzuki (1995). A solution of 2,6-dibromopyridine (1.9 g), palladium(II) acetate (0.02 g) and phenylboronic acid (5.5 g) in *N*,*N*-dimethylformamide was added to an aqueous solution of potassium carbonate (4.3 g). The mixture was refluxed for 5 h at 373 K. The cooled solution was extracted with 4×50 ml e thyl acetate/acetone (5:1 *v/v*) and the extract was filtered out. The solvent was evaporated under low pressure at 353 K. The resulting solid was recrystallized from ethanol to yield colourless blocks of (I). Found (%w) for C₁₇H₁₃N: C 88.97, H 5.32, N 5.71; calculated (%w): C 88.28, H 5.67, N 6.06. m.p. 351 K.

Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. H atoms were treated as riding atoms with C—H = 0.95Å and U_{iso} (H) = $1.2U_{eq}$ (C).

Figures

Fig. 1. A view of (I) with isplacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms).

Fig. 2. A stereoscopic view of symmetry related chains of molecules linked by the C—H. π interaction. H atoms not involved in the interaction are omitted for clarity.

2,6-Diphenylpyridine

Crystal data	
C ₁₇ H ₁₃ N	$D_{\rm x} = 1.206 {\rm ~Mg~m}^{-3}$
$M_r = 231.28$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Orthorhombic, <i>Pna2</i> ₁	Cell parameters from 1596 reflections
<i>a</i> = 16.1368 (16) Å	$\theta = 3.5 - 27.5^{\circ}$
<i>b</i> = 12.5371 (14) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 6.2969 (4) Å	T = 120 (2) K
V = 1273.9 (2) Å ³	Block, colourless
Z = 4	$0.70\times0.32\times0.14~mm$
$F_{000} = 488$	

Data collection

Bruker–Nonius CCD diffractometer	1596 independent reflections
Radiation source: Bruker-Nonius FR591 rotating an- ode	1147 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.053$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 120(2) K	$\theta_{\min} = 3.5^{\circ}$
π & ω scans	$h = -20 \rightarrow 20$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$k = -16 \rightarrow 16$
$T_{\min} = 0.953, \ T_{\max} = 0.990$	$l = -8 \rightarrow 8$
29987 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.163$	$w = 1/[\sigma^2(F_0^2) + (0.0775P)^2 + 0.6523P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{max} < 0.001$
1596 reflections	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
163 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary methods

Special details

Experimental. The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.40272 (15)	0.4122 (2)	0.3621 (5)	0.0353 (6)
C2	0.4510(2)	0.3407 (3)	0.4621 (6)	0.0356 (8)
C3	0.4702 (2)	0.3502 (3)	0.6756 (6)	0.0412 (8)
C4	0.4376 (2)	0.4338 (3)	0.7908 (7)	0.0443 (9)
C5	0.3893 (2)	0.5073 (3)	0.6890 (6)	0.0406 (8)
C6	0.37309 (19)	0.4956 (2)	0.4725 (6)	0.0345 (7)
C21	0.4814 (2)	0.2503 (3)	0.3325 (6)	0.0407 (8)
C22	0.5556 (2)	0.1994 (3)	0.3788 (8)	0.0503 (10)
C23	0.5826 (3)	0.1144 (3)	0.2567 (9)	0.0624 (13)
C24	0.5356 (3)	0.0782 (3)	0.0889 (9)	0.0635 (12)
C25	0.4618 (3)	0.1281 (3)	0.0410 (8)	0.0594 (12)
C26	0.4351 (3)	0.2137 (3)	0.1592 (6)	0.0468 (9)
C61	0.32310 (19)	0.5744 (3)	0.3538 (6)	0.0386 (8)
C62	0.3186 (2)	0.6797 (3)	0.4181 (7)	0.0512 (10)
C63	0.2743 (3)	0.7541 (3)	0.3035 (9)	0.0613 (12)
C64	0.2330 (2)	0.7237 (4)	0.1205 (9)	0.0629 (13)
C65	0.2361 (2)	0.6181 (3)	0.0548 (8)	0.0556 (11)
C66	0.2814 (2)	0.5446 (3)	0.1690 (6)	0.0434 (9)
H3	0.5055	0.2996	0.7421	0.049*
H4	0.4486	0.4402	0.9385	0.053*
Н5	0.3668	0.5659	0.7652	0.049*
H22	0.5881	0.2231	0.4953	0.060*
H23	0.6338	0.0808	0.2888	0.075*
H24	0.5539	0.0192	0.0067	0.076*
H25	0.4292	0.1032	-0.0744	0.071*
H26	0.3846	0.2483	0.1229	0.056*
H62	0.3466	0.7013	0.5437	0.061*
H63	0.2721	0.8261	0.3500	0.074*
H64	0.2028	0.7748	0.0405	0.076*
H65	0.2069	0.5965	-0.0691	0.067*
H66	0.2842	0.4728	0.1214	0.052*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (A^2)
--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0342 (13)	0.0336 (14)	0.0381 (15)	-0.0040 (11)	0.0018 (14)	0.0020 (13)
C2	0.0335 (16)	0.0326 (16)	0.0408 (19)	-0.0040 (13)	0.0022 (15)	0.0032 (16)
C3	0.0344 (16)	0.049 (2)	0.041 (2)	-0.0077 (15)	-0.0038 (16)	0.0062 (18)
C4	0.0417 (18)	0.052 (2)	0.039 (2)	-0.0110 (16)	-0.0035 (17)	0.0011 (18)
C5	0.0391 (17)	0.0454 (19)	0.0371 (19)	-0.0072 (15)	0.0058 (16)	-0.0080 (17)

supplementary materials

C6	0.0311 (15)	0.0338 (17)	0.0384 (19)	-0.0021 (13)	0.0009 (15)	-0.0015 (16)
C21	0.0453 (18)	0.0320 (15)	0.045 (2)	0.0002 (14)	0.0075 (18)	0.0058 (16)
C22	0.049 (2)	0.0365 (18)	0.066 (3)	0.0026 (15)	0.006 (2)	0.012 (2)
C23	0.063 (2)	0.039 (2)	0.085 (3)	0.0123 (18)	0.019 (3)	0.013 (2)
C24	0.090 (3)	0.0358 (18)	0.065 (3)	0.011 (2)	0.024 (3)	0.003 (2)
C25	0.088 (3)	0.0359 (19)	0.054 (3)	0.005 (2)	0.006 (3)	0.0004 (19)
C26	0.061 (2)	0.0344 (18)	0.045 (2)	0.0022 (16)	0.000 (2)	0.0007 (17)
C61	0.0307 (14)	0.0407 (17)	0.0444 (19)	0.0019 (13)	0.0034 (17)	-0.0021 (16)
C62	0.050 (2)	0.045 (2)	0.059 (3)	0.0085 (17)	0.0038 (19)	-0.005 (2)
C63	0.056 (2)	0.048 (2)	0.079 (4)	0.0154 (18)	0.011 (2)	0.000 (2)
C64	0.0384 (19)	0.068 (3)	0.083 (4)	0.0231 (19)	0.003 (2)	0.017 (3)
C65	0.0374 (19)	0.073 (3)	0.057 (3)	0.0057 (19)	-0.0049 (19)	0.005 (2)
C66	0.0331 (16)	0.0495 (19)	0.048 (2)	0.0032 (15)	0.0001 (18)	0.0013 (19)

Geometric parameters (Å, °)

N1—C6	1.344 (4)	C24—C25	1.378 (7)
N1—C2	1.344 (4)	C24—H24	0.95
C2—C3	1.385 (5)	C25—C26	1.376 (5)
C2—C21	1.481 (5)	C25—H25	0.95
C3—C4	1.378 (5)	C26—H26	0.95
С3—Н3	0.95	C61—C62	1.383 (5)
C4—C5	1.368 (5)	C61—C66	1.395 (5)
C4—H4	0.95	C62—C63	1.379 (6)
С5—С6	1.395 (5)	С62—Н62	0.95
С5—Н5	0.95	C63—C64	1.384 (7)
C6—C61	1.478 (5)	С63—Н63	0.95
C21—C22	1.387 (5)	C64—C65	1.388 (6)
C21—C26	1.400 (5)	C64—H64	0.95
C22—C23	1.384 (6)	C65—C66	1.380 (5)
С22—Н22	0.95	С65—Н65	0.95
C23—C24	1.378 (8)	С66—Н66	0.95
С23—Н23	0.95		
C6—N1—C2	118.9 (3)	C25—C24—H24	120.2
N1—C2—C3	121.8 (3)	C23—C24—H24	120.2
N1-C2-C21	116.4 (3)	C26—C25—C24	120.5 (5)
C3—C2—C21	121.8 (3)	C26—C25—H25	119.8
C4—C3—C2	119.4 (4)	C24—C25—H25	119.8
С4—С3—Н3	120.3	C25—C26—C21	120.6 (4)
С2—С3—Н3	120.3	C25—C26—H26	119.7
C5—C4—C3	118.9 (4)	C21—C26—H26	119.7
С5—С4—Н4	120.6	C62—C61—C66	118.3 (3)
С3—С4—Н4	120.6	C62—C61—C6	121.2 (3)
C4—C5—C6	119.6 (3)	C66—C61—C6	120.4 (3)
С4—С5—Н5	120.2	C63—C62—C61	121.3 (4)
С6—С5—Н5	120.2	С63—С62—Н62	119.3
N1-C6-C5	121.3 (3)	C61—C62—H62	119.3
N1-C6-C61	116.9 (3)	C62—C63—C64	119.9 (4)
C5—C6—C61	121.7 (3)	С62—С63—Н63	120.0

C22—C21—C26	118.3 (4)	С64—С63—Н63	120.0
C22—C21—C2	121.5 (4)	C63—C64—C65	119.6 (4)
C26—C21—C2	120.2 (3)	С63—С64—Н64	120.2
C23—C22—C21	120.6 (4)	С65—С64—Н64	120.2
С23—С22—Н22	119.7	C66—C65—C64	120.0 (4)
C21—C22—H22	119.7	С66—С65—Н65	120.0
C24—C23—C22	120.4 (4)	С64—С65—Н65	120.0
С24—С23—Н23	119.8	C65—C66—C61	120.8 (4)
С22—С23—Н23	119.8	С65—С66—Н66	119.6
C25—C24—C23	119.6 (4)	С61—С66—Н66	119.6
C6—N1—C2—C3	0.7 (5)	C22—C23—C24—C25	0.9 (7)
C6—N1—C2—C21	179.7 (3)	C23—C24—C25—C26	0.1 (7)
N1—C2—C3—C4	1.4 (5)	C24—C25—C26—C21	-1.2 (6)
C21—C2—C3—C4	-177.5 (3)	C22—C21—C26—C25	1.3 (5)
C2—C3—C4—C5	-2.1 (5)	C2-C21-C26-C25	-178.4 (4)
C3—C4—C5—C6	0.8 (5)	N1-C6-C61-C62	-152.9 (3)
C2—N1—C6—C5	-2.1 (4)	C5—C6—C61—C62	26.8 (5)
C2—N1—C6—C61	177.6 (3)	N1-C6-C61-C66	25.0 (4)
C4—C5—C6—N1	1.4 (5)	C5—C6—C61—C66	-155.3 (3)
C4—C5—C6—C61	-178.3 (3)	C66—C61—C62—C63	-0.1 (6)
N1-C2-C21-C22	151.8 (3)	C6—C61—C62—C63	177.7 (4)
C3—C2—C21—C22	-29.2 (5)	C61—C62—C63—C64	0.2 (6)
N1—C2—C21—C26	-28.5 (5)	C62—C63—C64—C65	0.5 (6)
C3—C2—C21—C26	150.5 (3)	C63—C64—C65—C66	-1.3 (6)
C26—C21—C22—C23	-0.2 (5)	C64—C65—C66—C61	1.4 (6)
C2—C21—C22—C23	179.4 (4)	C62—C61—C66—C65	-0.7 (5)
C21—C22—C23—C24	-0.8 (6)	C6—C61—C66—C65	-178.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
C64—H64···Cg1 ⁱ	0.95	2.74	3.534 (4)	142
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $z-1/2$.				

Fig. 2

